High frequency communication may (re)use large portions of the radio spectrum for communication, or may use select (narrow) band(s), depending on the technology.
[edit] Home networking (broadband)
Power line communications can also be used to interconnect home computers, peripherals or other networked consumer peripherals, although there is not yet a universal standard for this type of application. Standards for power line home networking have been developed by a number of different companies within the framework of the HomePlug Powerline Alliance and the Universal Powerline Association.
[edit] Internet access (broadband over powerlines)
Broadband over power lines (BPL), also known as power-line Internet or powerband, is the use of PLC technology to provide broadband Internet access through ordinary power lines. A computer (or any other device) would need only to plug a BPL "modem" into any outlet in an equipped building to have high-speed Internet access.
BPL may offer benefits over regular cable or DSL connections: the extensive infrastructure already available appears to allow people in remote locations to access the Internet with relatively little equipment investment by the utility. Also, such ubiquitous availability would make it much easier for other electronics, such as televisions or sound systems, to hook up.
But variations in the physical characteristics of the electricity network and the current lack of IEEE standards mean that provisioning of the service is far from being a standard, repeatable process. And, the amount of bandwidth a BPL system can provide compared to cable and wireless is in question. The prospect of BPL could motivate DSL and cable operators to more quickly serve rural communities. [1]
PLC modems transmit in medium and high frequency (1.6 to 80 MHz electric carrier). The asymmetric speed in the modem is generally from 256 kbit/s to 2.7 Mbit/s. In the repeater situated in the meter room the speed is up to 45 Mbit/s and can be connected to 256 PLC modems. In the medium voltage stations, the speed from the head ends to the Internet is up to 135 Mbit/s. To connect to the Internet, utilities can use optical fiber backbone or wireless link.
The system has a number of issues. The primary one is that power lines are inherently a very noisy environment. Every time a device turns on or off, it introduces a pop or click into the line. Energy-saving devices often introduce noisy harmonics into the line. The system must be designed to deal with these natural signaling disruptions and work around them.
Broadband over power lines has developed faster in Europe than in the United States due to a historical difference in power system design philosophies. Power distribution uses step-down transformers to reduce the voltage for use by customers. But BPL signals cannot readily pass through transformers, as their high inductance makes them act as low-pass filters, blocking high-frequency signals. So, repeaters must be attached to the transformers. In the U.S., it is common for a small transformer hung from a utility pole to service a single house or a small number of houses. In Europe, it is more common for a somewhat larger transformer to service 10 or 100 houses. For delivering power to customers, this difference in design makes little difference for power distribution. But for delivering BPL over the power grid in a typical U.S. city requires an order of magnitude more repeaters than in a comparable European city. On the other hand, since bandwidth to the transformer is limited, this can increase the speed at which each household can connect, due to fewer people sharing the same line. One possible solution is to use BPL as the backhaul for wireless communications, for instance by hanging Wi-Fi access points or cellphone base stations on utility poles, thus allowing end-users within a certain range to connect with equipment they already have. In the near future, BPL may also be used as a backhaul for WiMAX networks.
The second major issue is signal strength and operating frequency. The system is expected to use frequencies of 10 to 30 MHz, which has been used for many decades by amateur radio operators, as well as international shortwave broadcasters and a variety of communications systems (military, aeronautical, etc.). Power lines are unshielded and will act as antennas for the signals they carry, and have the potential to interfere with shortwave radio communications. Modern BPL systems use OFDM modulation, which allows to mitigate interference with radio services by removing specific frequencies used. A 2001 joint study by the ARRL and HomePlug Powerline Alliance showed that for modems using this technique "in general that with moderate separation of the antenna from the structure containing the HomePlug signal that interference was barely perceptible at the notched frequencies" and interference only happened when the "antenna was physically close to the power lines" (however other frequencies still suffer from interference).
Much faster transmissions using microwave frequencies transmitted via a surface wave propagation mechanism called E-Line have been demonstrated using only a single power line conductor. These systems have shown the potential for symmetric and full duplex communication well in excess of 1 Gbit/s in each direction. Multiple WiFi channels with simultaneous analog television in the 2.4 and 5.3 GHz unlicensed bands have been demonstrated operating over a single medium voltage line. And, because it can operate anywhere in the 100 MHz - 10 GHz region, this technology can completely avoid the interference issues associated with use of shared spectrum while offering flexibility for modulation and protocols of a microwave system.
border="0" alt="Hit Counters">
Web Site Hit Counter
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment