Saturday, December 6, 2008

Medium frequency (kHz)

Home control (narrowband)

Power line communications technology can use the household electrical power wiring as a transmission medium. INSTEON and X10 are the two most popular[unreliable source?], de facto standards using power line communications for home control. This is a technique used in home automation for remote control of lighting and appliances without installation of additional control wiring.

Typically home-control power line communication devices operate by modulating in a carrier wave of between 20 and 200 kHz into the household wiring at the transmitter. The carrier is modulated by digital signals. Each receiver in the system has an address and can be individually commanded by the signals transmitted over the household wiring and decoded at the receiver. These devices may be either plugged into regular power outlets, or permanently wired in place. Since the carrier signal may propagate to nearby homes (or apartments) on the same distribution system, these control schemes have a "house address" that designates the owner.

Since 1999, a new power-line communication technology "universal powerline bus" has been developed, using pulse-position modulation (PPM). The physical layer method is a very different scheme than the modulated/demodulated RF techniques used by X-10. The promoters claim advantages in cost per node, and reliability.

[edit] Low-speed narrow-band communication

Narrowband power line communications began soon after electrical power supply became widespread. Around the year 1922 the first carrier frequency systems began to operate over high-tension lines with frequencies of 15 to 500 kHz for telemetry purposes, and this continues.[2] Consumer products such as baby alarms have been available at least since 1940.[3]

In the 1930s, ripple carrier signalling was introduced on the medium (10-20 kV) and low voltage (240/415V) distribution systems. For many years the search continued for a cheap bi-directional technology suitable for applications such as remote meter reading. For example, the Tokyo Electric Power Co ran experiments in the 1970s which reported successful bi-directional operation with several hundred units.[4] Since the mid-1980s, there has been a surge of interest in using the potential of digital communications techniques and digital signal processing. The drive is to produce a reliable system which is cheap enough to be widely installed and able to compete cost effectively with wireless solutions. But the narrowband powerline communications channel presents many technical challenges. A mathematical channel model and a survey of work can be found in reference no. 5[5].

Applications of mains communications vary enormously, as would be expected of such a widely available medium. One natural application of narrow band power line communication is the control and telemetry of electrical equipment such as meters, switches, heaters and domestic appliances. A number of active developments are considering such applications from a systems point of view, such as 'Demand Side Management'.[6] In this, domestic appliances would intelligently co-ordinate their use of resources, for example limiting peak loads.

Control and telemetry applications include both 'utility side' applications, which involves equipment belonging to the utility company (i.e. between the supply transformer substation up to the domestic meter), and 'consumer-side' applications which involves equipment in the consumer's premises. Possible utility-side applications include automatic meter reading(AMR), dynamic tariff control, load management, load profile recording, credit control, pre-payment, remote connection, fraud detection and network management, [7] and could be extended to include gas and water.

A project of EDF, France includes demand side management, street lighting control, remote metering and billing, customer specific tariff optimisation, contract management, expense estimation and gas applications safety [8].

There are also many specialised niche applications which use the mains supply within the home as a convenient data link for telemetry. For example, in the UK and Europe a TV audience monitoring system uses powerline communications as a convenient data path between devices that monitor TV viewing activity in different rooms in a home and a data concentrator which is connected to a telephone modem.

The most robust low-speed powerline technology uses DCSK technology available from Yitran Communications[dubious – discuss]. Renesas Technology licenses this know-how from Yitran and incorporates it in the single chip MCU + PLC family of devices known as M16C/6S. Renesas also licenses a state of the art network layer for AMR/AMM applications which can run on these devices.

[edit] High-speed narrow-band powerline communication - distribution line carrier

DLC uses existing electrical distribution network in the medium voltage (MV) — i.e., 11 kV, Low Voltage (LV) as well as building voltages. It is very similar to the powerline carrier. DLC uses narrowband powerline communication frequency range of 9 to 500 kHz with data rate up to 576 kbit/s. DLC is suitable (even in very large networks) for multiple realtime energy management applications. It can be implemented under REMPLI System as well as SCADA, AMR and Power Quality Monitoring System. DLC complies with the following standards: EN 50065 (CENELEC), IEC 61000-3 and FCC Part 15 Subpart B.

There are no interference issues with radio users or electromagnetic radiation. With external inductive or capacitive coupling, a distance more than 15 km can be achieved over a medium voltage network. On low voltage networks, a direct connection can be made since the DLC has a built-in capacitive coupler. This allows end-end communications from substation to the customer premises without repeaters.

The latest DLC systems significantly improve upon and differ from other powerline communication segments. DLC is mainly useful for last-mile and backhaul instrastucture that can be integrated with corporate wide area networks (WANs) via TCP/IP, serial communication or leased-line modem to cater for multi-services realtime energy management systems.

[edit] Transmitting radio programs

Sometimes PLC was used for transmitting radio programs over powerlines. When operated in the AM radio band, it is known as a carrier current system. Such devices were in use in Germany, where it was called Drahtfunk, and in Switzerland, where it was called Telefonrundspruch, and used telephone lines. In the USSR PLC was very common for broadcasting since 1930s years because of its cheapness and accessible. In Norway the radiation of PLC systems from powerlines was sometimes used for radio supply. These facilities were called Linjesender. In all cases the radio programme was fed by special transformers into the lines. To prevent uncontrolled propagation, filters for the carrier frequencies of the PLC systems were installed in substations and at line branches.

An example of the programs carried by "wire broadcasting" in Switzerland:

* 175 kHz Swiss Radio International
* 208 kHz RSR1 "la première" (French)
* 241 kHz "classical music"
* 274 kHz RSI1 "rete UNO" (Italian)
* 307 kHz DRS1 (German)
* 340 kHz "easy music"

[edit] Utility applications

Utility companies use special coupling capacitors to connect medium-frequency radio transmitters to the power-frequency AC conductors. Frequencies used are in the range of 24 to 500 kHz, with transmitter power levels up to hundreds of watts. These signals may be impressed on one conductor, on two conductors or on all three conductors of a high-voltage AC transmission line. Several PLC channels may be coupled onto one HV line. Filtering devices are applied at substations to prevent the carrier frequency current from being bypassed through the station apparatus and to ensure that distant faults do not affect the isolated segments of the PLC system. These circuits are used for control of switchgear, and for protection of transmission lines. For example, a protection relay can use a PLC channel to trip a line if a fault is detected between its two terminals, but to leave the line in operation if the fault is elsewhere on the system.

While utility companies use microwave and now, increasingly, fiber optic cables for their primary system communication needs, the power-line carrier apparatus may still be useful as a backup channel or for very simple low-cost installations that do not warrant installing fiber optic lines.


border="0" alt="Hit Counters">


Web Site Hit Counter

No comments: